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Universal Homoclinic Bifurcations and Chaos near 
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We study the dynamics near the intersection of a weaker and a stronger 
resonance in n-degree-of-freedom, nearly integrable Hamiltonian systems. For a 
truncated normal form we show the existence of (n-21-dimensional hyperbolic 
invariant tori whose whiskers intersect in/mdtipulse homoclinic orbits with large 
splitting angles. The homocliuic obits are doubly asymptotic to solutions that 
"diffuse" across the weak resonance along tile strong resonance. We derive a 
universal homoclinic tree that describes the bifurcations of these orbits, which 
are shown to survive in the full normal form. We illustrate our  results on a 
three-degree-of-freedom mechanical system. 

KEY WORDS:  Hamiltonian systems; resonances; homoctinic bifurcations; 
chaos. 

1. I N T R O D U C T I O N  

This paper is concerned with Hamiltonian systems of the form 

H(L ~; e) = Ho(I) + eH,(L ~; e) 1) 

where (L ~b)~ W' are n-dimensionaI action-angle variables, 0 < e  ~ 1 is a 
small perturbation parameter, and the Hamiltonians Ho and Hi are 
assumed to be real analytic funtions. The canonical Hamiltonian vector field 
generated l~y H0 is completely integrable with the n independent integrals 
I~ ..... /,,. The phase space of this integrable system is foliated by n-dimen- 
sional invariant tori of the form I = const. Most  &these  tori typically carry 
quasiperiodic motions with n rationally independent frequencies, but there 
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is also a set of tori with action value I '  that satisfy resonance conditions of 
the form 

(D,Ho(I") ,  k )  = 0 (2) 

for some k ~ 7/". These resonant tori form a dense resonant set in the phase 
space. In the generic case the KAM theory guarantees that most unper- 
turbed tori outside a neighborhood of the resonant set survive for e > 0. 
This implies that the perturbed Hamiltonian (1) is stable in the sense that 
most initial conditions remain confined to invariant tori for all times. This 
fact, however, does not prevent instability in a vicinity of the resonant set 
where the KAM tori are destroyed. In his classic paper Arnold c~ offered a 
model for this instability. His model system exhibits an (9(1) variation in 
the action values for arbitrary small e. The variation occurs along solutions 
that visit neighborhoods of lower dimensional hyperbolic or whiskered tori 
that form a transition chain. 

It is well known, however, that some features of Arnold's example are 
nongeneric. Even more importantly, he introduced an additional small 
parameter to make the contributions from the nonresonant harmonics of 
the perturbation Hamiltonian Ht as small as needed compared to the reso- 
nant harmonics. In reality, the amplitudes of nonresonant harmonics are 
very small, but not independent of the magnitude of the parameter e, which 
multiplies the amplitudes of the resonant harmonics as well. This would 
normally result in exponentially small splittings of separatrices, a problem 
which is eliminated by Arnold's introduction of the second small parameter 
mentioned above. Nonetheless, it is widely believed that his construction 
does provide the fundamental mechanism for "diffusion" along single 
resonances in the phase space of the Hamiltonian (1). [By diffusion we 
man ~( 1 ) displacement of initial conditions in the action space as e ~ 0, as 
described in ref. 2. See ref. 6 for a more precise definition.] Indeed, at least 
some of the nongeneric features of Arnold's example can be eliminated ~~ 27.5~ 
and the transition chains of tori can be constructed with full rigor for 
certain classes of problems. ~5 71 

To obtain a comprehensive picture of global diffusion along the reso- 
nant set, one also needs to understand the dynamics at the intersection of 
single resonances, where the resonance condition (2) is satisfied by two or 
more linearly independent integer vectors. Near such a multiple resonance 
the Hamiltonian can be reduced to an m-degree-of-freedom normal form, 
where m >/2 is the multiplicity of the resonance (see, e.g., refs. 8, 4, 2, 26, 
and 31 ). The corresponding normal form Hamiltonian can be viewed as 
that of m strongly coupled pendula, or, alternatively, the one describing the 
motion of a billiard ball in an external field on a periodic table. Clearly, 
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these problems are usually nonintegrable and defy any analytical approach. 
The exception is the case of m = 2, for which there are general variational 
results on the existence of periodic and asymptotically periodic solutions.~" 31 

Recently, careful numerical experiments on symplectic maps suggested 
that Arnold diffusion near single resonances may be dominated by much 
faster motions in the action space that take place near multiple resonances/251 
Motivated by these observations, in ref. 17 we derived a normal form for the 
Hamiltonian ( 1 ) near the intersection of a stronger and a weaker resonance. 
Due to the decay of Fourier coefficients of analytic functions, the pendulum- 
type leading-order part of such a normal form turns out to be near-integrable. 
We showed the generic existence of a codimension-two slow manifold with 
motions that cross the weaker resonance along the stronger one at a speed of 
(9(x/~). Using Fenichel coordinates near the low manifold, c1~176 we 
constructed an (_O(x/~) open neighborhood of the slow manifold which is also 
filled with similar crossing motions. This justifies the numerical observability 
of cross-resonance diffusion in weak-strong resonance "junctions." (The 
measure of initial conditions involved in Arnold diffusion along a single 
resonance, as well as the average diffusion speed, appear to be exponentially 
small in x/~.) In conclusion, the results in ref. 17 establish the existence of a 
new, observable mechanism for "fast" diffusion across weak resonances. 

At the same time, the results in ref. 17 naturally lead to some new 
questions regarding the nature of cross-resonance diffusion. First, does 
cross-resonance diffusion take place in the vicinity of trajectories that lie in 
the intersection of stable and unstable manifolds of invariant sets, as in the 
case of Arnold diffusion? If yes, is the corresponding chaotic behavior 
"stronger" than chaos near single resonances? Finally, can be find particular 
trajectories that appear to be good candidates for connecting regions with 
slow Arnold diffusion to others with fast cross-resonance diffusion? 

In this paper, using "normally hyperbolic techniques," we address the 
above questions. Our main result is the existence of generic families of 
motions that go through complicated transients before they cross the 
weaker resonance along the stronger one. These motions are nontrivial 
homoclinic or heteroclinic obits asymptotic to sets that are close to lower 
dimensional invariant tori. The homoclinic orbits make repeated excursions 
before asymptoting to their limit sets. These excursions manifest themselves 
as repeated" crossings of the surface corresponding to the strong resonance, 
as well as repeated pulses in the slowly varying resonant phase combina- 
tion corresponding to the strong resonance. After these transients, the 
homoclinic obits slowly cross the weaker resonance along the stronger 
resonance. We refer fo this phenomenon as multipulse homoclinic jumping 
within the strong resonance. In a truncation of the normal form, these 
multipulse obits lie in the intersection of stable and unstable manifolds to 
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tori which exhibit (9(~/~) splittings, i.e., at least one spitting angle between 
the manifolds is not exponentially small. As a result, the corresponding 
homoclinic chaos is much stronger than the one caused by exponentially 
small splittings in Arnold's diffusion near a single resonance. Finally, the 
multipulse orbits we construct continue to exist in a vicinity of the weaker 
resonance; thus they are good candidates for connections between Arnold's 
transition chain and the slow manifold at the center of the resonance 
junctions. We believe that further study of these obits will shed light on 
how exactly the exponentially slow Arnold diffusion speeds up to velocities 
algebraic in v/e near the intersection of two resonances. 

We also study the bifurcations of the above multipulse orbits as the 
system parameters in the unperturbed Hamiltonian H0 are varied. It turns 
out that the multipulse homoclinic orbits generically undergo a sequence of 
pulse-multiplying bifurcations. If one introduces an appropriate nonlinear 
scaling for the energies of the multipulse orbits and plots these scaled 
energies against the bifurcation parameter, the resulting bifurcation 
diagram turns out to be universal, i.e., independent of the given system and 
the given resonance. We call this bifurcation diagram the homoclinic tree 
(see Fig. 8). The intricate structure of this homoclinic tree indicates a high 
level of stochasticity close to the center of the resonance junction. 

Based on these results, one generically expects an observable multi- 
pulse #Ttermittency in diffusion at weak-strong resonance junctions. For 
fixed valued of the system parameters, this intermittency occurs when solu- 
tions diffusing along a single resonance (following Arnold's mechanism) 
reach an intersecting higher order resonance. As a result, the above- 
mentioned chaotic jumping within the strong resonance sets in and lasts on 
times scales C(1/,,/~). The measure of initial conditions affected by this 
intermittency is d;(v/~). 

To illustrate that our results are applicable to concrete near-integrable 
systems, we explicitly verify the existence of multipulse intermittency for the 
three-degree-of-freedom mechanical model shown in Fig. 1. This system 
consists of three coaxial rigid bodies which are able to rotate about two 
fixed vertical shafts without any friction or damping. However, the rotation 
of the first body (on the top) is constrained by a torsional spring (for a 
detailed description of the model see Section 5). We chose this system for 
illustration for two reasons. First, it is a realistic example, since the Fourier 
expansion of the perturbed Hamiltonian is not a finite trigonometric poly- 
nomial. Second, we would like to highlight that such a simple mchanical 
system can already admit the type of complicated dynamics that we 
describe in this paper. We study our model system under the assumption 
that the eccentricities er~ and er 2 of the two linear springs shown in Fig. 1 
are small. We are interested in the behavior of the model near a family of 



Homoclinic Bifurcations and Chaos 1015 

~ - 81=0 

Fig. 1. The mechanical example. 

resonance junctions. These junctions are characterized by a strong 1:1 
resonance between the angular velocities of the second and the third body, 
and by a weaker 1 :k~ resonance between the torsional natural frequency 
of the first body and the angular velocity of the second body. We find that 
for sufficiently high values of k~, there is an infinite number of resonance 
junctions in the phase space of the model which admit the universal, 
chaotic, multipulse intermittency that we described above. 

The paper is oganized as follows. In Section 2 we recall some results 
from ref. 17 on normal forms near weak-strong resonance junctions. In 
Section 3 we first describe an integrable limit of the truncation of this 
normal form, then proceed to establish the generic existece of multipulse 
intermittency in the truncated normal form. In Section 4 we extend our 
results to the full, n-degree-of-freedom normal form, which includes an 
exponentially small "tail." In Section 5 we demonstrate our results on the 
mechanical model shown in Fig. 1. Finally, in Section 6 we summarize the 
main results "and their implications. 

2. N O R M A L  F O R M  FOR W E A K - S T R O N G  D O U B L E  
R E S O N A N C E S  

Throughout  this paper we assume that for some fixed constant a > 0 
the complex extension H~(I, z; e) of the Hamiltonian H~ is analytic and 
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bounded in norm by a constant K . > 0  on the domain Ilmz~l~<a, 
l e S t  R", for some bounded open set S. This implies that 

Hi(I, r e) = ~ h,(I; e) e i<*''/'>, 
k ~ 2~ n 

sup I[H, II < K~ 
I ~ S  

were h k e C  denotes the Fourier coefficient of H~ corresponding to the 
multiindex k. To measure the length of an integer vector k = (k~ ..... k,,), we 
use the norm 

n 

Ikl = Y'. Ik,I 
i = 1  

We shall study the unperturbed Hamiltonian Ho near a point I" of the 
action space where precisely two independent resonance relationships of 
the form (2) are satisfied. This implies that the resonant module 

M =  {k e 7/"I < D,Ho(I"), k> = 0} (3) 

is two dimensional. Let r t e M be a minimal element of the module M, i.e., 
an integer vector with the property that for any k e M ,  ]k] ~> Irtl holds. 
Furthermore, let r 2 be an element of M which is linearly independent of 
rt and with modulus minimal among all elements of M that are linearly 
independent of r~. We require the resonance associated with r2 to be higher 
in order than the one corresponding to r~ and express this requirement by 
fixing 0 < tc < a and picking positive constants 0 </~ ,~ c o such that 

12 C(n 'K~'K)]+I  (4) IIh,.,(I"; 0)11 > Co, Ir2[ >~ L(lt) = Int log kt 

where the constant C > 0  depends only on the parameters indicated. 
[The  actual dependence of C on the parameters is C(n, K,,, K)= 
4 "+ l e l - " K - " ( n  -- 1 )"- t K~,.] 

In a vicinity of the double resonance we introduce the new coordinates 
( A , 0 ~ ) ~ 2 •  2 and (B, f l )~l~"- ' -xT ''-2 by letting 

where the integer matrix T s  R ..... with [det T[ = 1 contains r~ and I" 2 in its 
first two rows, respectively, and the rest of its rows are linearly independent 
of the first two. As described in ref. 2, repeated averaging with respect to 
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the "fast" angles fl and the additional scaling f l--*x/~B brings the 
Hamiltonian H to the normal form 

H(A, oc, B, fl; e) = x/~e (b, B )  + v/~e [ Hv~.d(A , ~) + v/e H2(A , or, B; x/e)] 

+ e-"/':" H3(A, cr B, fl; x/re) (5) 

with c > 0 and v = l/8n(n + 1). (For brevity we do not describe the precise 
domain of definition of this Hamiltonian, as it is not used in our analysis, 
but see ref. 4 for details.) In (5), b e I~"-2 contains the last n -  2 elements 
of the vector TDtHo(I'), the functions H2 and H 3 are analytic in their 
arguments, and the pendulum-type Hamiltonian Hpr is of the form 

Hor oO = �89 A, P(H)A ) + Vl(o~l " p) + p  V2(a; p) (6) 

with 

Lip)/ l r l l  

Vl(~ l ;p )  = y'. "h,~,,.,,,e '~''~' 

Pl = 0  ~p e i (p '~> 

V2(cr p )  = ~ - -  , 
[parl +pnr2[ > LCS~) P 

0 < p  '~r 
(7) 

The symmetric matrix P c  ~2• appearing in (6) is the first 2 x 2 minor of 
"~ r the matrix TDTHo(I ) T'; hence on a compact set o f / "  values and for fixed 

rt e M, its norm obeys the estimate 

( 1): 
b[P(P)[]<Kt [r2[Z<K2 log~ (8) 

for appropriate positive constants Ki. The Fourier coefficients in the 
"potentials" V~ and V2 are defined as 

hp = ht.(I"; 0), k = p l r l + p 2 r 2  (9) 

Furthermore, both V~ and V2 and their derivatives admit H-independent 
bounds, in "particular, 

] V , [ < K . .  [V2]<l .  ]]D~V2I]<~]k[! h. I~1 (10) 

As usual, to obtain the normal form (5), one has to assume that the n - 2  
frequencies corresponding to the fast angles fl satisfy appropriate Diophan- 
tine conditions. ~4~ We finally note that the normal form Hamiltonian (5) 
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generates the corresponding Hamiltonian vector field through the symplec- 
tic form 

~o = ckt ^ dA + x/~ dfl ^ dB (11) 

As we shall see, one may treat the Hamiltonian (6) as close to integrable, 
even though, strictly speaking, the formal limit/~ = 0 is not well defined. The 
reason is that/~ = 0 would mean an "infinitely high order" resonance by 
Eq. (4), and hence no Fourier term would satisfy the summation condition 
in the definition of the potential V_,. Also note that the (A, e) components 
of the Hamiltonian vector field deriving from (5) decouple from the system 
up to exponentially high orders. 

We would like to study the pendulum Hamiltonian (6) as a perturba- 
tion of the integrable Hamiltonian 

o I Hp~,d(A , 0c) = 5<A, P(lt) A ) + Vl(~l ;/t) (12) 

where we pointed out the dependence of the matrix P and the poential V, 
on the parameter/~ > 0. To this end, we select and fix a concrete strong 
resonance corresponding to the generator r~ e M and pick an action value 
I~; on the resonant hypersurface (DIHo(I),  r~)=0.  We also consider a 
fixed, open ball N c R" in the action space which is centered around I = Ii;. 
As a nondegeneracy condition on the Hamiltonian H ~ v~,,d, we assume that 
there exists a constant c~ > 0  and for all I " e . ~  and 0</~ </~o there exists 
an angle ctjo(/~) such that 

D~, Vl(~, , ; / t)  = 0, pll( l~)D~,Vl(~lo;t~)>cl>O (13) 

R e m a r k  2.1. It is important to note that a/~-independent constant 
e~ with the above properties can be found for /~>0 sufficiently small, 
because for fixed I", J Pl~J is a nondecreas#~g function of/.t as ~ ~ 0. If p j~ 
and V~ have no explicit /~ dependence in a given application, then the 
constant c~ exists globally in the action space, hence the restriction of the 
resonant action values I" to the bounded ball M is not necessary. This is the 
case, e.g., in our example in Section 5. 

It is easy to verify that for any fixed A_, value, the above non- 
degeneracy conditions imply the existence of a saddle point ct~ = e , ) ,  
A~ = -P~2A2/P~ for the ( ~ ,  A~) component of the equations generated by 

o (see the next section). Furthermore, the modulus of the Hamiltonian Hv~,, J 
the corresponding real eigenvalues is bounded away from zero by the 
constant c~. For later purpose we also require the nondegeneracy condition 

det P 4 : 0  (14) 
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In the following we first analyze the two-degree-of-freedom, near-integrable 
pendulum Hamiltonian Hpe m which decouples from the full normalized 
Hamiltonian if we neglect the exponentially small tail of the normal form. 
Then in Section 4 we extend our results to the full Hamiltonian (5). 

3. D Y N A M I C S  OF THE P E N D U L U M  H A M I L T O N I A N  

In this section we study a slightly modified version of Hp~.d of the 
form 

"<A, Ho~,d(A, 0~; p) = PA> + V , ( ~ ; / . t ) + p V , ( ~ ; # )  (15) 

with the auxiliary parameter 0~<p~<p. We will first fix p and establish 
results for sufficiently small values of p. As a second step, we will show that 
these results continue to hold for p = p  provided the fixed /.t is small 
enough. 

3.1. The Integrable Limit p = 0  

The Hamiltonian vector field corresponding to Hpr 0q 0) [defined 
in { 15) ] takes the form 

dj = p l jA (  + pl2A2 

AI = -D=,  Vl(cxl;p) 

~2 = p~2AI + P22A2 

.4_,=0 

(16) 

which shows that A2 is an integral for this system. We recall that the 
parameter/z is arbitrarily small but fixed, and the constants pi/depend on 
~t. Generically, the periodic potential V~ has isolated local minima and at 
least one of these extrema, ~to, will satisfy the nondegeneracy condition 
(13). We can directly see from Eq. (16) that any such local extremum ~,0 
gives rise to a two-dimensional invariant manifold for (16) of the form 

= --P~-A2A~} (17) */~'= ( A ' ~ ) l ~  PJl - 

Moreover, this manifold is of "saddle type," i.e., normally hyperbolic/9"32~ 
In this paper we are interested in structures near multiple resonances that 
influence large sets of initial conditions, which is why we focus on normally 
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hyperbolic manifolds with their attendant stable and unstable manifolds. 
The most important hyperbolic manifolds of the form ~//o are those 
whose stable and unstable manifolds serve as boundaries for the stronger 
resonance. A boundary for the strong resonance is a hypersurface that 
separates solutions of (1) that cross the stronger resonance from those that 
do not. We now make the following assumption: 

(A1) I V,(~,;~)l < I Vl(0Clo; 10], i.e., ~lo is a unique global extremum 
point for the potential V~. 

Note that by the periodicity and nondegeneracy of V~, it certainly 
possesses isolated global minima and maxima. The above assumption 
covers the generic case when the extrema are unique. In such a case the 
boundary of the strong resonance has precisely two components, W § and 
W-, which form a symmetric pair of manitblds homoclinic to ~ In Fig. 2 
we show the geometry of these homoclinic manifolds by factoring out the 
angular coordinate ~ .  We also indicate two important three-dimensional 
surfaces in the figure that appear as planes. The plane A~= 0 corresponds 
to the resonance hypersurface associated with the stronger r~ resonance, 
while A 2 = 0 describes the hypersurface of the weaker r, resonance. We call 
these hypersurfaces the cores of the respective resonances. 

All solutions in ,-f/o with A2:~0 are periodic and correspond to the 
limits of (17-1)-dimensional whiskered tori of the full normal form 
Hamiltonian. It is not hard to see that in a neighborhood of J/o the energy 
surfaces containing the periodic orbits act as barriers that prevent solutions 
from crossing the core of the weak resonance along the strong resonance. 
However, for p > 0, these barriers are typically destroyed by the perturba- 
tion in the vicinity of the weak resonance. The reason is that for p = 0 a 

Az=0 / ]  ,t / - ........... _ _ / _ _ _ _ ~ / /  

7 

Fig. 2. The manifold . / / .  and its stable and unstable manilblds. 
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singularity occurs in -,go at A2=0:  the priodic orbits degenerate into a 
circle o f  equilibria cgo. 

Any fixed point in ego is connected to anoher fixed point in cg o by a pair 
of heteroclinic obits. We call the change of the slow angle a2 on these 
connections the phase shift, and denote it by d0t + for heteroclinic orbits in 
the homoclinic manifold W e. From (16) we obtain that 

f +~ f r[+ dt=2ztp~z, Act+= p~2A~( t )d t= p~" d~(t} AoG-=-Aot  + (18) 
- ~ Pll Pll - - 

where (A~-(t), ~ ( t ) )  is the heteroclinic solution that lies in W + and 
connects fixed points in eg o . 

The circle % is of central importance in our  study, as it corresponds 
to an invariant (n -1) -d imens iona l  torus of the integrable Hamiltonian 
Ho. This torus is located precisely at the center of the resonance junction, 
i.e., at the intersection of the cores of the weak and the strong resonances. 
In the limit p = 0 of the normal form, the torus is folialed by one-parameter 
families of ( n -  2)-dimensional invariant tori which appear in system (16) 
as the equilibria in %.  

3.2. The Per turbed  Pendu lum H a m i l t o n i a n  w i t h  p > 0  

We now turn to the study of the Hamiltonian Hpend with p > 0, which 
generates the Hamiitonian vector field 

dl = pll A j "1- plzA2 

A, = --D=, V,(~l ; p) - pD~, Vz(oc , , ~2;/z) 
(19) 

d2=Pl2Al  + pz2A2 

A2 = - p D ~  2 Vl(oCl , %;/z)  

Well-known invariant manifold results guarantee that the manifold J/o 
smoothly perturbs into an 6:(p) C-close invariant manifold o4~, for any 
finite integer r>~ 1 (see, e.g., ref. 9). Furthermore, it is shown in ref. 14 that 
manifolds of the form o,/~, carry a one-degree-of-freedom Hamiltonian 
dynamics thfit slightly deforms but preserves the periodic solutions on ,/~, 
which are sufficiently separated from the A 2 = 0  core of the weak 
resonance. Using the area-preserving nature of appropriate Poincar~ maps, 
one can easily conclude that the stable and unstable manifolds of the 
surviving periodic orbits still intersect (see, e.g., ref. 33 for an argument). 
In the generic case the stable and unstable manifolds will intersect trans- 
versely, giving rise to isolated transverse homoclinic orbits and nearby 
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invariant Cantor sets with chaotic dynamics. To verify transversality in 
given examples, one can use the Melnikov function 

M(c%,,A2)=I~,_ {H~ V2} ; , , , d t  (20) 

as derived, e.g., in ref. 19 for two-degree-of-freedom Hamiltonian systems of 
the form (19). Here xt ' ( t )= (A(t), ~(t)) denotes an unperturbed homoclinic 
solution with (A t(t), A 2, cc t(t), ~2o + 0% t), which is homoclinic to a peri- 
odic solution in ,.~/~. The frequency of  the periodic solution is easily com- 
puted to be co o = A 2 det PiPit.  Hence for periodic orbits with A2 = Cg(v/-p), 
one can perform the Melnikov calculation and then take the limit p---,/z. 
The result will be conclusive, since the frequency vector remains bounded 
and nonzero for small p > 0 by the estimate (8) and the nondegeneracy 
conditions (13) and (14). For  periodic orbits with (9(1) values of A 2, the 
Melnikov integral will depend on the frequency coo = 6'((log 1//x)2), which 
becoms "fast" when one finally takes the limit p ~ p for some small value 
of p. Hence a formal Melnikov calculation becomes inconclusive, as it 
yields exponentially small splittings. It appears, however, that appropriate 
extensions of the results in ref. 12 could be applied to verify transversality 
in this case. 

3.2.1. The S l o w  Man i f o l d .  Note that all solutions described 
above remain outside a neighborhood of the core of the weak resonance 
(A2 =0) .  In order to understand the dynamics near the weaker resonance, 
we shall concentrate on evergy surfaces that intersect an g'(v/p) neighbor- 
hood of the plane A2=0.  In such a neighborhood the above statements 
about the perturbed dynamics are not valid since the periodic orbits on,/r 
are not guaranteed to survive. 

First, to understand what happens on ,  74, close to the weak resonance, 
we introduce the usual resonance scaling 

A2= v /p  r I 

which "blows up" a neighborhood of the core of the weak resonance. (In 
the context of resonant circles on invariant manifolds, this scaling was 
apparently used first in ref. 24.) Then it is easy to verify that the 
Hamiltonian flow on, /~ ,  near A, = 0 is generated by the equations 

d, = x / ~  D ,JJt( *l, r 2 ) + (37(P 3 2) 

0 = - v / P  D=: J[(r/, %) + (.O{p 3 2) 
(21) 
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which are, in general, only canonical at leading order. After a rescaling of 
time by x/~, the leading-order terms in (21) derive from the reduced 
Hamiltonian ._~# given by 

1 det P 
_ _  q2 + V~(%o, ~ ; / t )  (22) Jg(q, ~2) = 2  p~. 

as seen from the general results in ref. 14 for perturbed circles of equi- 
libria in Hamiltonian systems. Nonsingular level curves of ~g smoothly 
approximate actual trajectories of the restricted vector field (21) with 
6~(v/p) precision [which means (9(p) precision in the original (A2, ct2) 
coordinates]. The equations in (21) also show that J4, is locally a slow 
maniJbM near A2 = 0 with a characteristic time scale 6;(l/x/~). By the non- 
degeneracy condition (14), all slow motions enclosed by the separatrices of 
the reduced Hamiltonian .Yg cross the core of the weak resonance and con- 
nect points that are C~(v/p) apart in their A2 coordinates. In ref. 17 we used 
slow manifolds of the form,/4, to construct an open set of initial conditions 
tbr which solutions cross the weak resonance along the strong resonance. 

3.2.2. M u l t i p u l s e  H o m o c l i n i c s .  Our main goal is to establish 
the existence of solutions that are doubly asymptotic to slow solutions on 
J4,, but exhibit fast excursions from the slow manifold on intermediate 
time scales. The significance of such homoclinic or heteroclinic solutions 
is that they describe motions that pass through the weak resonance along 
the strong one after exhibiting fast transients. Since all slow motions 
degenerate into sets of equilibria at the limit p = 0, regular perturbation 
methods cannot be used to construct orbits asymptotic to them for p > 0. 
In particular, the basic assumptions of the usual Melnikov method for the 
study of two-degree-of-freedom near-integrable Hamiltonian systems (see, 
e.g., ref. 19) are not satisfied. Instead, we shall use the energy-phase 
method, ~5j~'~ which has been developed precisely for detecting motions 
doubly asymptotic to hyperbolic slow manifolds. 

First, for any integer N>/1 we define the Nth-order energy-difference 
function dN.Yl(~2) as 

21"v~r = V2(~l,, ~_, + NAomi; i 1) -- V2(%o, %;/~) (23) 

As one can verify from (22), p,~'\'Jtc'(Ot2) m e a s u r e s  the leading-order energy 
difference between two points on the slow manifold that were originally 
connected by a chain of N heteroclinic orbits lying in W +. We shall be 
concerned with the existence of two basic types of orbits that are 
asymptotic to slow solutions on ,,t4,. In the following definitions segments 
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refer to compact, connected subsets of orbits. We also recall that by the 
core of the strong resonance we mean the surface r/= 0. 

Defini t ion 3.1. An orbit homoclinic to the manifold J / ,  is an 
N-pulse librational orbit if it has N segments (P(x/~) C~'cl~ to unper- 
turbed heteroclinic connections and it intersects the core of the strong 
resonance outside a fixed [i.e., (0(1) as p ~ 0 ]  neighborhood of J / ,  (see 
Fig. 3a) N - 2  times. 

Defini t ion 3.2. An orbit homoclinic to the manifold J / ,  is an 
N-pulse rotational orbit if it has N segments (9(x/~) C'-close to unperturbed 
heteroclinic connections and it does not intersect the core of the strong 
resonance outside a fixed neighborhood of ./gp (see Fig. 3b). 

Definition 3,3. An orbit homoclinic to the manifold J / ,  is an 
N-pulse passing orbit if it has N segments (P(x/~) CJ-cl~ to unperturbed 
heteroclinic connections and it intersects the core of the strong resonance 
precisely once outside a fixed neighborhood of J l ,  (see Fig. 3c). 

Clearly, the librational, rotational, and passing orbits are either 
homoclinic or heteroclinic to slow solutions on Jr We finally introduce a 
definition that will be used to describe the order of transversality of stable 
and unstable manifolds along multipulse homoclinic orbits. 

Defini t ion 3.4. Let X and Y be two smooth, n-dimensional mani- 
folds embedded in R 2'' that intersect at a point p e ~-'". Let TpX denote the 

A, a) 

"'"'., .................. 

, 

A, b) 

...: ".., . . . . . . . . . . . . . . . . . . . . .  
. . . . "  "".... 

"" . . . . . .  - . . . .  . . . .-- 
. . . . . . . . . . . . . . . . . .  . - . "  . . . . . . . . . . . . . . . . . . . . . .  

T 
A, c) 

Fig. 3. Projections or{a)  librational homoclinic orbits with N = 4, (b) rotational homoclinic 
orbits with N=2,  and (c) passing homoclinic orbits with N = 4  onto the (~l,-41) plane. 
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tangent space to X at p, and let Np Y denote the normal space to Y at p. 
Then we define the maximal splitting angle of X and Y at the point p as 

a (p  ) = m a x  { ( u, v)  I u ~ T ,X,  o ~ N ,  Y, lu l  = Ivl = 1} 
t t .  v 

Note that this definition is obviously symmetric in X and Y. Further- 
more, if we pick two orthonormal bases t ~ u,,./";= ~ c T~,X and { v j} j=" , ~  Np Y 
and define the sp6tting matrix 

Mr= { ( u  i, t [ i ) }  i, j e R .... .  (24) 

then we have 

a(p) = IIMp[I (25) 

This shows that although the entries and the eigenvalues of M r generally 
depend on the choice of the bases, the norm of Mp is invariant and can be 
thought of as the sine of the maximal angle enclosed by the two manifolds 
at the point p. The entries of Mp characterize the order of magnitude of the 
angles between two basis vectors from TpX and Np Y. 

We can now prove the following main result on the existence Of multi- 
pulse homoclinic orbits. 

Theorem 3.1. Suppose that assumption (A1) is satisfied and ? is a 
periodic orbit of the reduced Hamiltonian Yr. Then for p > 0 small enough 
the following hold. 

(i) If p~A~, :ge[7<0,  then the system (19) admits a continuous 
family of slow periodic solutions close to 7, each with at least four two- 
pulse, librational homoclinic orbits. 

(ii) I f p l t A k , g / f l y > 0  for k = l , . . . , N - - 1  andpllANyfly<O, then 
the system (19) admits a continuous family of slow periodic solutions close 
to 7, each with at least four 2N-pulse, passing homoclinic obits. Further- 
more, there are no lower pulse orbits homoclinic to orbits in the family. 

(iii) If P lm A k~f' [ ? > 0 for k = 1 ..... N -  1 and A Nj/f has m transverse 
zeros on 7," then the system (19) admits a continuous family of slow 
periodic solutions close to 7, each with at least 4m transverse, N-pulse rota- 
tional heteroclinic orbits backward asymptotic to it. The heteroclinic orbits 
are forward asymptotic to slow obits of (21) that pass near points of the 
form (qN, ~2N+A~), where (r/N, 0C2N) is a transverse zero of AN~ on 7. 
Again, there are no lower pulse obits backward asymptotic to members of 
this family. 

822/86/5-6-9 
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(iv) The maximal splitting angle along the rotational heteroclinic 
orbits in statement (iii) is 6~(x/~) as p ~ 0. 

Proof. The proof follows the ideas described in refs. 15 and 16, so 
we only outline the main steps. Since :W generates the leading-order terms 
of the Hamiltonian vector field on the slow manifold, there exists a family 
of slow periodic orbits on or whose projections on the (r/, ~2) plane are 
(9(x/~) CLclose to 7. We pick a periodic orbit Y/- from this family and 
follow one of the two components of its two-dimensional unstable manitbld 
W"(y 7 ). This manifold leaves a neighborhood of Jgj,, stays close to W +, 
and enters a neighborhood of .r again by intersecting a two-dimensional 
Poincar6 section _r+ which is transversal to the flow within the energy sur- 
face containing ),~- (see Fig. 4a). The intersection is a smooth curve @~ 
which has the property that its (q, ~b) projection is CLclose to 7+LJct_r 
(i.e., to the image of the orbit 7 under a shift by the angle As +). 

Suppose that y+ is another slow orbit of the restricted system (21) 
with the same energy as 7,~- Then the local stable manifold W~,c(),~ + ) also 
intersects the section Z "+ in a curve gt with (q, ~b) projection CLclose to 
7~ +. By the implicit function theorem, W+'(yv) intersects W"(7,, + ) transver- 
sely if 7 + da~  intersects some other isoenergetic level curve of the reduced 
Hamiltonian Jr .  But this is equivalent to the condition that A~J? ' has a 
transverse zero on 7, which proves (iii) for N =  1. If, however, J J W  has no 
zero on 7 then the unstable manifold IV"(),. ) leaves a neighborhood of J/~, 
without intersecting the stable manilbtd of a slow orbit and travels in a 
neighborhood of either W + or W-. This can be decided by comparing the 
energy of ' , + IV' (~ p ) to energies of nearby solutions in the three-dimensional 
stable manifold Wi'oc(J/~,). At leading order, the difference in energies is just 
given by the function A~3e~J~, (see [16] for details). Consequently, if 
z l t ~  ] y > 0  (or J ~)rt~ I y < 0 )  then W"(y~ . ) passes by Wi'o~(~#v) in the direc- 
tion of (or in the direction opposite to) the gradient DHpc,a on Z +, Com- 
puting the gradient DHp~d we immediately see that p t t J t ~ I 7 > 0 implies 

AI + 

�9 '. y "  

--  . . . . . . . . . . . . . . . . . .  . . . - ' -  

a) 

. . . . . . . . ,  . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . + . .  

b) 

Fig. 4. The Poincar~ sections X + and -~-. 
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a passage in the direction of W + and p ~ A ' ~  I )' < 0  implies a crossing of 
the strong resonance A~= 0 in the direction of W . In this latter case, by 
standard Gronwall estimates, the unstable manifold W"(),/7) returns to 
a neighborhood of the slow manifold and intersects a two-dimensional 
Poincar6 section S -  (see Fig. 4b). This time the intersection curve 
~2=s  has an (q,~2)-projection which is Ct-close to 
7 +  A ~  +A%;-=  ~,. At the same time, the curve ~ = s  Wi~oc(y,, +) also 
projects to a curve that is C~-close to ~,. Since Z ' -  is a graph over the 
variables q and ~2 and ~ and ~2 are closed curves of the same area, we 

l, V n  - obtain that (~,,) and W"~or t,t" + ,~ must intersect in at least two librational, 
2-pulse homoclinic orbits. Repeating the same argument for the other com- 
ponent of I4"~'(),~,) proves statement (i) of the theorem. 

It remains to consider the case o f p ~ A ~ J g l ) , > O  which implies that 
the unstable manifold of )',7 passes in the direction of W +. Then IV"(),,.) 
passes in a neighborhood of W § and reintersects the Poincar6 section s 
Repeating the same reasoning as above, we obtain that if A2j f  I ~' has a 

WTt/ r -  transverse zero then there exists a slow orbit ~,,,+ such that ~,, ) inter- 
sects ,,c~,, ~ transversely upon its second intersection with s This 
proves statement (iii) for N = 2 .  If, however, A 2 J f I ~  , has no zero, then 
W"(~,, ) again passes near .,/~, either in the direction of W + or of W-.  The 
passage direction is again determined by the sign of the function 
p~At~/to])  ,. If this sign is negative then I4~'(), 7 )  crosses the strong 
resonance and returns to the section s  The fact that p ~ A ~ J C I } , > 0  
ensures that W"(),,7) again passes .~,  in the direction of W -  and its subse- 
quent intersection with s  has an (q, ~2)-projection that is Ct-close to 7,7. 
This proves statement (ii) for N = 2 .  Then statements (ii) and (iii) follow 
for arbitrary N by induction. (The number of the homoclinic or 
heteroclinic orbits in these statements follows from the fact that our entire 
construction can be repeated for the other connected component of the 
unstable manifold I4~'(), 7 ).) 

Finally, let an N-pulse rotational multi-pulse orbit described in state- 
W"  , - "  W"(7,, + ). Consider the intersec- ment (iii) lie in the intersection ~),, ; n  

tion curves @N= W"(~ , , , )mS  + and ,~A,= W"(),,, +) c~Z + with the Poincar~ 
section Z "§ As we noted above, these intersections are graphs over the 
0I, ~2) variables and are (9(x//-p) CI-close to the curves ),~. + N A o ~  and y/,+, 
respectively: Hence, if 'g,v and .@,v intersect transversally, then the inter- 
section angle is C9( 1 ) in terms of the (~/, ~2) coordinates as p ~ 0 (see Fig. 5 ). 

In terms of the (A2, cx,) coordinates, this means an (9(x/~) angle. Since the 
stable and unstable manifolds are two dimensional and their intersection is 
one dimensional, computing the intersection matrix M~, for p ~ ~,v ~ ~',v in 
an appropriate basis immediately yields the maximal splitting angle a(p) = 
IIM~,)I = (9(x/~). This proves statement (iv). II 
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rl 

(~~ WS<~'~) 

Fig, 5. Intersections of the stable and unstable manifolds of the periodic solutions 7/~ with 
the Poincar6 section Z "+. 

Remark 3.1. If no other level curve of ~ has the same energy 
as y, then the librational orbits guaranteed by statement (i) of the theorem 
are necessarily asymptotic to the same slow periodic orbit in forward time 
as well, i.e., they are homoclinic orbits. 

Remark 3.2. The "large" splitting angles described in statement 
(iii) of the above theorem are due to the singular perturbation nature of 
our system: the stable and unstable manifolds of slow periodic solutions are 
not smooth continuations of unperturbed structures. Rather, they are 
created by the (9(p) perturbation in the breakup of the circle of equilibria 
o n  J//[o. 

3.2.3. Universal Bifurcations:  The Homoc l in ic  Tree. We 
now apply Theorem 3.1 to periodic solutions with the property described in 
Remark 3.1. In particular we assume that: 

(A2) There exists a connected open set @o that contains an elliptic 
fixed point of ~ and is entirely filled with periodic orbits 
which are energetically unique (i.e., each is the only connected 
component of a level set of-or 

In the generic case the global minima and maxima of the poential part 
V2(0q0, ~2;/1) of YC are energetically unique; hence there exists an elliptic 
equilibrium for the reduced Hamiltonian ~ with an open neighborhood 
which is filled with orbits satisfying assumption (A2). We select the maxi- 
mal such connected neighborhood and denote in by ~0. Note that ~o is 
always bounded by a homoclinic orbit or by a pair of heteroclinic orbits. 
In Fig. 6a we show the construction of ~o in a homoclinic case when 
det Pip ~j < 0, which mans that the kinetic energy-type term in the reduced 
Hamiltonian Jt ~ has a positive "mass." We denote the angular diameter of 
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a) b) 
Fig. 6. The domain  ~o and the layers Live. 

@o by do. We want to find conditions under which there are multipulse 
orbits backward asymptotic to slow orbits close to those of ~ in ~0. By 
Remark 3.1 and Assumption (A2), these multipulse obits are necessarily 
homoclinic to slow solutions. 

We now proceed by interpreting the assumptions of Theorem 3.1 in 
geometric terms for the case covered by statement (iii). We observe that the 
condition z l~~  I 7' ~ 0 for k = 1 ..... N -  1 means the following: Shifting the 
level curve ~, of the reduced Hamiltonian ~r ~ N -  1 times by the amount of 
the phase shift A~ I in the ~_~ direction, we always find that the shifted 
curve does not intersect any other level curve of ~ with the same energy. 
For any ~, ~ ~o this observation implies that the minimal index k for which 
zlk#g I ~, has a zero is the minimal number of shifts by z l ~  such that 
~, + z l ~  has an intersection with ~,. This number is well defined for any 
closed orbit 7' ~ ~0 and we call it the pulse number of 7' [denoted N(~,)]. 

It is easy to see that for fixed zl~f,  ~o can be divided into "layers" of 
orbits with different pulse numbers. The number of layers is infinite if 
2n/Ao~ + is an irrational number and is finite otherwise. If N~, N 2 .... is the 
sequence of pulse numbers associated with the layers Lu,,LN,_ .... (see 
Fig. 6b), then the inner boundary of the layer LNk is a periodic orbit YNk 
such that N =  N k is the minimal positive integer for which ~)Uh "~ NAe+ 
becomes tangent to ~'~v~.. Therefore, introducing the sequence 

dN = min 12ln-N2l,  N>~ 1 (26) 
IEZ 
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with 2=lA0%+lmod2rc and setting No=0 ,  we find that for k>~l the 
elements of the pulse sequence Nk are determined by the formula 

N~.= min {NldN<duk_.} (27) 
N ~ - N k _  I 

Using formula (27) together with (26), we immediately obtain the diameter 
sequence dN~ which, for any fixed 2, is the maximal strictly monotone 
decreasing subsequence of the sequence d x .  

The remarkable feature of the recursive formula (27) is that it is 
universal, i.e., independent of the concrete form of the Hamiltonian ( 1 ) and 
of the particular weak and strong resonances under consideration. This fact 
enables us to construct the diameter sequence du, in general as a function 
of the bifurcation parameter k. We start by selecting an integer N >_- 1 and 
consider the family of lines defined by dN= 121g--N) d, l eZ ,  on the (2, d) 
plane of 2 ~ [0, 2~) and d >  0. For any 2 we determine the point in this 
diagram that is the closest to the 2 axis and highlight it if it also falls below 
all points found in this fashion for integers tess than N. We show this easy 
graphical construction in Fig. 7 for N = 1 , 2 , 3 , 4  and in Fig. 8 for 
N =  1 ..... 100. The resulting bifurcation diagram is an infinite binary tree 
which we shall refer to as the homoclinic tree. (A similar binary tree 
appeared in ref. 16 in the study of a modal truncation of a parametrically 
forced beam_) In a given example only the part of the tree with d < d0 is 
meaningful. The nodes of the homoclinic tree correspond to bifurcations in 
the layer sequence as the parameter 2 is varied. These bifurcations occur 
for rational values of 27~/2 which form a dense set of the parameter space. 

Since the gradient of  the reduced Hamiltonian is nonzero along the 
closed orbits in the region -~o, there exists a smooth, one-to-one relation- 
ship between the angular diameter of the closed orbits and their energy. In 
other ords, there exists a diffeomorphism f0: R ~ R with fo(duk) = J{~ [ )'NI,., 
where 7N~ ~ ~o is the periodic orbit with angular diameter dN~. Since the 
obits on the manifold Jg, are close to the orbits of W, and they depend 
smoothly on x/~ for p > O, there also exists a diffeomorphism J),: R ~ R 
such that 

~,('dNk} = Hpcoa(J '%, )  = Hpcnd(0, ~10, 0) + pJ(f  [ )'N,. d- (-.0(p 3'2 ) 

In other words, there exists an appropriate nonlinear scaling such that the 
vertical axis of  the bifurccrtion diagram in Fig. 8 becomes just the scaled 
energy of the bifurcating multipulse orbits. 

In Fig. 9 we .also ,show the pulse sequence Nk(2) determined by (27). 
As one can see, the possible bifurcations in pulse numbers form a very rich 
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Fig. 8. The univers~tl homoclinic tree for N, ~< 100. 
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family which is not restricted to pulse doubling or tripling. We summarize 
our main results in the following theorem. 

T h e o r e m  3.2. Let us assume that Assumptions (A1) and (A2) are 
satisfied. Then: 

(i) If for all (q, 0~2)r we have plt( 'Yg(r/,~2)-~f '[) 'o)<0, then, 
for p > 0 small enough, there exists a set ~t, on the slow manifold close to 
~o which is filled with slow periodic orbits that admit at least four two- 
pulse, librational homoclinic orbits. 

(ii) If for all (r / ,~2)r o we have p,l(Y{'(q, ~2)-Yt~ { 7o)>0, then 
for any fixed value of the parameter 2(A~ + ), for any element Nk of the 
corresponding pulse sequence Nx(2) graphed in Fig. 9, and for p > 0 small 
enough, the perturbed system (19) has an infinite number of transverse, 
N~_-pulse rotational orbits homoclinic to slow periodic orbits in the 
manifold ~'p. Accordingly, there exist Smale horseshoes with chaotic 
dynamics on the energy levels containing these periodic orbits. The slow 
periodic orbits with Nk-pulse homoclinic orbits form a smooth layer Luk 
with inner angular diameter close to duk, as graphed in Figs. 7 and 8. 

(iii) The maximal splitting angle along the rotational homoclinic 
orbits in statement (ii) is O(v/-p) as p ~ 0. 

Proof. To prove the theorem we only note that, by Assumption 
(A2), for any (~/, ~2)r and for all periodic orbits ) ' ~ o  we have 

sign[p,t(,~(r/, 0c2)- Y# I 7)] = sign[p,~(~(t/, 0c2)- ,~  I 7o)] 
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In view of this, the statements of the theorem follow from Theorem 3.1 
combined with our previous discussion and the Smale-Birkhoff homoclinic 
theoremJ 91 II 

R e m a r k  3.3. If the minimal period p of the reduced Hamiltonian is 
less than 2n, then Assumption (A2) cannot be satisfied, hence Theorem 3.2 
is not applicable directly. However, if there exists a periodic orbit Yo of the 
type described in (A2) and it is energetically unique within some annular 
region 0~2~ [022,022 + P ] ,  then for phase shift values with IA~_r mod 2n < p  
a theorem analogous to Theorem 3.2 can be proven. In general, the multi- 
pulse orbits obtained in this way will be heteroclinic orbits connecting 
different slow periodic solutions. 

Theorem 3.2 suggests that the dynamics of the pendulum Hamiltonian 
is more chaotic near the slow manifold if the conditions of (ii) hold than 
in the case of (i). This follows from the facts that in the case covered by 
statement (ii) the transversality of the intersecting stable and unstable 
manifolds is guaranteed at an angle of (9(x/~) and the intersection orbit 
makes more than two pulses. At the same time, in the case covered by 
statement (i) we can conclude the existence of an open set of initial condi- 
tions that first cross the stronger resonance relatively fast, then cross the 
weak resonance along the strong one at a much lower speed (see also the 
related results in ref. 17). 

3.3. Passage to the  Limit  p =  

In this subsection we prove that for p small enough, i.e., for sufficiently 
higher weaker resonances, the invariant manifolds and nontrivial 
homoclinic orbits continue to exist in the pendulum Hamiltonian 
Hpe,d(A, ~;p) even as we increase p up to p. This is important since 
Hpe,a(A, 0q p) is only equal to the original pendulum Hamiltonian in (6) if 
we set p = p. We can prove the following result. 

Theorem 3.3. Let us assume that for arbitrary small p o > 0  and 
for any integer .N>0 there exist constants c s > 0  and p_,p+ with 
0 < p _  < p +  <Po such that for any i.t~[p_,p+], 0 < N < N ,  and 0Z, e S  l 
with AN.~(~2) = O, 

ID~_,A Ng/F(OZ2)[ > c 3 > 0 (28) 

holds. Then there exists an infinite set 6e~ of closed intervals in any vicinity 
of zero such that for any p ~ ~v  and N < N, the results listed in Theorems 
3.1 and 3.2 remain valid for p =p .  
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Proos First we prove that the invariant manifold "~4, continues to 
exist for p =lL. To this end, we need to verify that the manifold ./f~, is 
normally hyperbolic t9"2~ for all p with 0 ~< p ~<IL. This requires the computa- 
tion of the Lyapunov type numbers 

it 2"(p) = lim sup 1117 DF_,(p)I  ,~: II '"' 

v"(p) = lira sup IIH~DF,[F_,(p)]IN;,II ''' (29) 

log tIDF_, I //,,(P) 
a"( p ) = lim sup _ log II H"DF, [ F_ ,( p ) ] I,v;, l[ 

where p is an arbitrary point on the manifold J4,, F,(. ) denotes the flow 
generated by the pendulum Hamiltonian Hp~,d, N~ and N~I denote fibers at 
p in the stable and unstable subbundles, respectively, of the normal bundle 
of ~/4,, and the maps /7": TR2[.u,,--*N ' and H": TR2"].u, ,- ,N '' denote 
projections to the stable and unstable subbundles of ../~,. From (16) we 
obtain that for p = 0  the eigenvalues associated with the linear part of 
Hw, d along the manifold ./~) are 2 ~.2 = --+ [ P ~ t D-'~, Vd ~ m; P) ] ~/2. Then, in 
an appropriate basis, the linearized flow operator of (35) takes the form 

DF, ] ,~,, = e -'~''' 

with Ao = diag(2~, 22). Direct substitution into (29) gives the type numbers 

2"(p) = exp{ - [p, ,  D~, V,(~,o; p) ]  ,,,2} 

D 2 Vi(~io;ll)] i,z } v " ( p ) = e x p { - [ P l l  ,, 

a"(p) = 0 

(30) 

which shows that 

s u p 2 " ( p ) , s u p v " ( p ) < l ,  sup cr"(p) < 1/r (31) 
P P P 

for any integer r >~ 1. This just reflects the fact that for p = 0 the manifold 
o./~) is normally hyperbolic. The question is whether the suprema of the type 
numbers 2", 2", and ~" stay bounded away uniformly from 1 and 1/r, respec- 
tively, as we increase the parameter p up to p. By a result of Kopeli, (23) 
for p~>0 and for any fixed T > 0 ,  the supremum of the type number 2'j, 
computed for the perturbed manifold "~4, can be estimated as 
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sup 2'~;(p) ~< sup [IH"DF"_r(p)II ,/T 
t'~-/6, p~.a,, 

= sup IIH"DF~ 
p E . /h~ 

= exp{ - [p , ,  D~, V,(a,o; p ) ]  ,/z} + CO(p) 

~<exp( - x/~t ) + C0(p) 

where we used the nondegeneracy condition (13). But this shows that 
u sup,~ u, 2,,(p) 1 holds for all p~</l i f / t > 0  is sufficiently small. A similar 

argument shows that the rest of the inequalities in (1) also hold for all 
p<<.p. This implies the existence of a normally hyperbolic invariant 
manifold ogr which is r C"-close to J ~  and admits stable and unstable 
manifolds C~-close to those of .#o- 

The next step is to verify the persistence of multipulse orbits described 
in Theorems 3.1 and 3.2. In the (sketchy) proof of Theorem 3.1 we gave a 
geometric formulation of the problem of existence of multipulse solutions. 
A more analytic approach (see, e.g., ref. 18) yields that N-pulse homoclinic 
orbits correspond to transverse zeros of the energy-difference equation 

A NJF(72) + do-~-x(C~2, q, p~) + p~v(~2 ,  r/, p~) = 0 (32) 

where the function ANJtv is defined in (23), -~-u and ~#u are smooth func- 
tions, 1/2 < r < 1, and 6o > 0 is an arbitrarily small constant which is inde- 
pendent of p. i.e., remains unchanged as p ~ 0. The right-hand side of the 
above equation is equal to  [Hpcn~l(SN)- Hpr where PN is a point 
in the Nth intersection of W"(Jgj,) with a three-dimensional cylinder U,~,, of 
radius do centered around o#~,. The point sN lies in W~,c(Jg ,) and its q and 
cc 2 coordinates are the same as those of PN" It is shown in ref. 18 that if the 
energies of SN and PN are the same, then the two points coincide, giving rise 
to an N-pulse orbit homoclinic to J~,. Clearly, transverse zeros o~ 2 of the 
energy-difference function A'V::/g given rise to zeros 0Z2(p) of Eq. (32) for 
p > 0 small enough by the implicit function theorem. We want to show that 
these zeros persist as we increase p up to p. 

By the meaning of the right-hand side of (32) explained above, the 
functions "~U and fiN are periodic in the variable ~2 and their r/dependence 
comes from the kinetic energy term (A ,  PA ) of the pendulum Hamiltonian 
Hp~,j. This fact toether with the estimate (8) implies that for a fixed com- 
pact set of I" values and for 0 < N < .~ we have 

IO~_,-~xl,[D~_,~,v[ <c4 log (33) 
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for some constant c4>0.  Selecting 6 o = p  *, we can use estimate (33) 
together with condition (28) of the theorem to conclude that for p values 
from intervals of the form [p _, p + ], 

[D~,_[A '̂3zg(~z(p)) -k- 60.~'u(0~2(p) t/, pr )+P~N(~2(P) ,  q, P~)][ 

uniformly in p ~<p provided p > 0 is small enough. But then the implicit 
function theorem implies that the local solution ~2(P) of Eq. (32) can be 
continued up to p =p .  Then the statement about persisting invariant 
Cantor sets follows from the persistence of transverse homoclinic orbits for 
p =p .  Finally, the maximal splitting angle is continuous in the parameter 
p, since the intersecting stable and unstable manifolds are continuous in p. 
This proves that the maximal splitting angle along N-pulse rotational 
homoclinic orbits is (_9(x/~) in the limit p =p .  | 

We note that assumption (28) of the above theorem means that 
arbitrarily close to the origin of the p axis we can find intervals for which 
the order of transversality of the zeros of a finite number of energy dif- 
ference functions z~N~ "r is independent ofp .  Since the entries of the matrix 
P typically depend on p as [log(l/H)]-" [see estimate (8)], the value of 
Ao( + mod 2~ runs through S ~ repeatedly as p becomes smaller and smaller 
[ see (18)]. Still, we can find a set 5PN of intervals on the p axis within 
which 

D~2AN3r = D~:[ V2(o(,o, c( 2 + NAO(+ (p); p) - V2(o(10, o(2; P)]  

stays bounded away from zero uniformly in p. In our example in Section 5 
we in fact obtain that ~v can be taken a single connected interval of the 
form (0, P0]. 

4. D Y N A M I C S  IN THE N O R M A L  F O R M  

In this section we extend the results obtained for Hpend to the full 
normal form Hamiltonian H(A,O(,B, fl) defined in (5). As a first step, 
we assume that condition (28) holds and fix N > 0  and p~S~ (see 
Theorem 3.3). Then for any higher order resonance with Jr2[ > L ( p )  that 
intersects the fixed strong resonance with generator r~, the invariant 
manifolds and multipulse homoclinic orbits described in the previous 
section exist. 
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4.1. The Truncated Normal Form 

We now describe the invariant manifolds of the truncated n-degree-of- 
freedom normal form that correspond to the invariant manifolds of the 
pendulum equation. It is easy to see that any k-dimensional invariant 
manifold M of the Hamiltonian Hpe.o gives rise to a [k + 2 ( n -  2)]-dimen- 
sional invariant manifold ASt for the truncated normal form Hamiltonian 

R(A,o~,B;e)=x/~e[Hp~,~(A, oO+x/~eH,_(A, oqB;v/e)] (35) 

which generates the Hamiltonian vector field 

A = - . f i  +.fi ] 

l~=b + x/~e D.n2( A, a, B; v/~e) 

B=O 

through the sympletic form 09 defined in (11). The manifold AI is dif- 
feomorphic to M x  Ux-g ''-z, where UcW' - - "  is an open subset of the 
space of the action variables B. In particular, under the assumptions of 
Section 3, the truncated Hamiltonian /-7 admits a (2n-2)-dimensional  
invariant manifold of the form 

2Q~'={ (A'~ la~=~176 PtiPl2AzW(9('~'/~)'B~U} 

(36) 

/~,, contains an open set /)~, diffeomorphic to ~ ,  x Ux-I] -"-2. (Note that 
these invariant manifolds intersect different energy surfaces: fixing the 
energy would reduce their dimensions by one.) 

Now let us consider a periodic solution }, c ~ ,  c ./~, which has an 
N-pulse homoclinic orbit yU. Fixing the integrals (B, ..... B,,_2) in the 
truncated normal form, we see that ), gives rise to an ( n -  1 )-dimensional 
torus F =  7' x-g,,-2. One frequency on this torus is (9(x/~) and the rest are 
(9( 1 ). The tdrus admids n-dimensional stable and unstable manifolds given 
by W""(F)=W"'"(y)x-~ "-2. These manifolds intersect in the ( n - 1 ) -  
dimensional homoclinic set y^ 'x ~"-2.  By a simple dimension count, the 
intersection of W~(F) is not transverse within the (2n-1)-dimensional  
energy surface (recall that n>~3). In particular, the splitting distance 
between the manifolds W"(F) and W~'(F) is zero when measured in the 
d~rection of the action variables (B, fl). At the same time, in the case 
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covered by statement (ii) of Theorem 3.2, the splitting distance and the 
maximal splitting angle of these manifolds is 60(v/'/~) in the (A, ct) direc- 
tions, as we stated in Theorem 3.3 (cf. Remark 3.2). Consequently, the split- 
ting matrix M r defined in (24) can be chosen in such a way that one 
diagonal element is ~0(v/~) and all the other entries are zero. Since the 
norm of this matrix is (_0(x/~), we find that the maximal splitting angle is 
(9(v/~). Passing back to the original action-angle variables (L ~b), we then 
obtain that the maximal splitting angle is (9(x/~). Fixing/~ > 0 then shows 
that the maximal splitting angle for the stable and unstable manifolds of  the 
(n--1)-tori of  the truncated normal form is (9(x/~) as e ~ O, when we 
measure the angle in terms of  the original (I, ~) variables. 

If the conditions of (ii) of Theorem3.2 are satisfied, then we 
immediately obtain invariant Cantor sets with chaotic dynamics for a 
Poincar6 map associated with the truncated Hamiltonian/7. These Cantor 
sets are the Cartesian products of the Cantor sets obtained in the theorem 
with the set U x T"--" 

4.2. The  Full N o r m a l  Form 

The following theorem describes how the above structures survive in 
the full normal form (5). 

T h e o r e m  4.1. Suppose that Assumptions (1) and (A2) are satisfied 
uniformly for /l > 0  small enough. Then for any .~> 0 and ~t e ~v suf- 
ficiently small there exists eu > 0 such that for 0 < e < eo: 

(i) The Hamiltonian system (5) has a (2n-2)-dimensional  
invariant manifold M,  which is ~0(v/e) C"-close to A~r, for any finite integer 
r~>l. The manifold M,  has (2n- l ) -d imens ional  stable and unstable 
manifolds which are ~0(x~) C"-close to W"(A~r ) and ' - W' (M~,), respectively, 
in a neighborhood of M, .  (Fixing the energy would reduce the dimensions 
of these manifolds by one.) 

(ii) If for all (17, ct2) r o we have pjt(.Y_f(q, c t2)- .Jf  ] ) 'o)>0, then for 
any fixed value of the parameter 2 ( A ~  ) and for any element Nk < ~7 of the 
corresponding pulse sequence Nk(2) (graphed in Fig. 9) the normal form 
(5) has an infinite number of Nk-pulse rotational orbits homoclinic to a set 
D~, c Mr, which is diffeomorphic to ~o x U x ~-" - 2. The Nk-pulse orbits are 
asymptotic to solutions which stay in the set LN, X UxT"-~-cM~,  for 
times (_9(log 1/x/~ ) [cf. (ii) of Theorem 3.2]. 

(iii) The maximal splitting angle along the rotational homoclinic 
orbits in statement (iii) is (9(x/~) as e ~ 0. 



Homoclinic Bifurcations and Chaos 1039 

(iv) An appropriately defined Poincar6 map associated with (5) 
possesses an invariant Cantor set with chaotic dynamics whose elements 
are diffeomorphic to the set U x ql-" ~. 

Proof. Just as in Theorem 3.3, we prove (i) by verifying that the 
manifold )14~, is normally hyperbolic. A similar calculation shows that the 
Lyapunov type numbers for ~Q~, are of the form 

2"(p) = exp{ - [ep,, D2~, 

v"(p) = exp{ - [epi, D~ 

a'(p) = 0  

V,(~.,;/~)] */-'} + C0(#) 

V,(~i~,;~)] ~,,2} + r 

which again yields that 

sup 2"(p), sup v~(p) < 1, sup a"(p) < 1/r 
P P P 

for any integer r>~ 1 and for e, ll > 0 small enough. This means that for 
e > 0 and for/2 > 0 small enough the manifold /Q, is normally hyperbolic 
and any Hamiltonian sufficiently close to I-7 possesses a nearby invariant 
manifold Mr, with the properties described in statement (i) of the theorem. 
However, for fixed e the exponentially small "tail" of the normal form 
Hamiltonian (5) means a perturbation of f ixed size on the manifold ~ r .  
In other words, the strength of the hyperbolicity of/14~, depends on the 
perturbation parameter e. To resolve this difficulty, we follow the same 
approach as in the proof of Theorem 3.3 by introducing an auxiliary per- 
turbation parameter g and considering the Hamiltonian 

I2I( A, ~, B, fl; ~ ) = x/~e ( b, B} + x/~ [ Hoc,,j( A. o~ ) + x/~e H~_ ( A, c(, B; x/~)] 

+ ~H~( A, o~, B, fl; x/~e) (37) 

for some fixed, sufficiently small value of e. By the normal hyperbolicity of 
.~r ,  there exists go > 0 such that for all 0 < g < go the Hamiltonian system 
generated by H admits an invariant manifold M~ ~, with the desired proper- 
ties. For any such g this manifold is normally hyperbolic; hence g can be 
slightly increased and M~, persists. We would like to argue that it is 
possible to increase g up to exp(-c/e")  and preserve the normal hyper- 
bolicity of M~, [i.e., preserve the inequalities (31) for the type numbers 
computed for " M, ] .  By the result from Kopell ~-'3~ that we used in the proof 
of Theorem 3.3, for any fixed T >  0 the supremum of the type number 2~ 
computed for the perturbed manifold M~, obeys the estimate 
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sup 2'/(p) ~< sup IIH"DF'~'_r(P)II t/r 

= sup IIH"DF~ CO(e) 
r E  /~l/t 

= exp{ -- [ep,, D~ V,(~m; p)]  ,/2} + (9(/~, e) 

< e x p ( - x / ~ 3 )  + Co(p, e) 

hence 

sup ).~(p) < 1 

holds for all ~ ~< e x p ( -  c/e"). A similar argument shows that the rest of the 
inequalities in (1) also hold for all ~<exp( -c / e" ) ,  which proves statement 
(i). The persistence of multipulse orbits and their properties follow from 
Theorems 3.2 and 3.3 and from the fact that exponentially small perturba- 
tions preserve the transverse intersections of the stable and unstable 
manifolds of Mj, which intersect at an angle (9(p). Finally, the statement 
about persisting invariant Cantor sets follows from the structural stability 
of invariant sets of the truncated normal form, which are Cartesian 
products of Smale horseshoes with the set Ux T"-2. | 

The above theorem does not state that the surviving multipulse orbits 
are still asymptotic to whiskered tori which are contained in the persisting 
( 2 n -  2)-dimensional manifold M~,. While this statement is most likely true, 
it cannot be proven by the direct applications of the existing versions of 
the KAM theory. In particular, the results of Moser, ~281 Graft, 1'3~ or 
Zehnder ~34"35J do not apply here since the Lyapunov exponents are not 
constant along the unperturbed whiskered tori. Similarly, a direct applica- 
tion of the KAM theorem to the dynamics on the symplectic manifold Mj, 
is not possible since the restricted symplectic form is noncanonical. As a 
result, the restricted Hamiltonian vector field cannot be written in a near- 
integrable form in any obvious way. Nevertheless, the multipulse solutions 
constructed above remain exponentially close to invariant whiskered tori of 
the truncated normal form on time scales (9(exp(c/e")). Thus, for numerical 
purposes, their actual limit sets are indistinguishable from ( n -  1 )-dimen- 
sional invariant tori. 

5. A N  E X A M P L E  

In this section we illustrate our general results on the three-degree-of- 
freedom mechanical model shown in Fig. 1. The positions of the three disks 
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in this system are measured by the angles t~, ~2, and ~3. The first disk on 
the top is attached to the upper fixed shaft via a torsional spring of stiffness 
s~ as well as to the second disk via a linear spring of stiffness s2. The third 
disk at the bot tom is also attached to the second disk via a linear spring 
of stiffness s3. The unstretched lengths of the two linear springs are l~o and 
12o, respectively, and their endpoints on the first and the third disks have 
eccentricities erj and er2, respectively, where e>/0 is a small parameter. 
(For e = 0 the three disks decouple from each other.) The endpoints of the 
two linear springs on the second body lie at a distance of R from the shaft, 
and we assume that/~0,120 < R. The moments of inertia of the three bodies 
with respect to the common axis of rotation are denoted by ~ ,  J2, and ~ ,  
respectively. 

It is easy to verify that the kinetic energy T and the potential energy 
V of this three-degree-of-freedom system are given by 

1 ""-' 1 "9 I "2 

t ,_ r j ( R - l t o )  cos(fi2- 6t) V=~_s~6 l-e[sl  

+ sl r2(R - 12o) c0s(62 - ~3)] + (9(e2) 

We introduce action-angle variables Ii, r i =  1, 2, 3, by letting 

l ~ t s  l 
=. - -  - - C 0 S r  I ~l col sin r  dl "~-" ~11 091 

St 

r  I2 = J_,fi2, 43=03,  13 = ~ d 3  

where co~ = ~ / J r  is the torsional natural frequency for the free oscilla- 
tions of the first body. In these new variable the Hamiltonian H =  T +  V 
can be written as 

H(I, r e) = Ho(I) + eHt(I, r e) 

with 

1 13 (38) 
H~176 +~ + 2 J 3  

HI(L r 1 6 2  COl sin r  

+ s2r2( R - -  120) c ~ 1 6 2  - -  r  1 + (9(e2) (39) 

822~86J5-6-10 
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For [Imzt] ,  [Imz2[, [Imz3] < a  the modulus of the complex extended 
Hamiltonian H~(L  z; e) can be estimated as I H d L  z; e)l < K~ with 

K,, = 2 + s2r2(R - 12o)( 1 + sinh 2 2a)i/2 

{1 +sin 2 sin ~ .40. 

where we used some elementary identities for hyperbolic functions. 
We are interested in motions of the model near a double resonance 

where 

holds for e = 0 and for some k~ e Z +. On any unperturbed energy surface 
Ho(I )  = ho, this resonance occurs at the action value I '  given by 

/,,, + �89 - � 8 9  
I '  I - , I ~ = k , c o , . ~ ,  I ; = k , o ) , J 3  (41) 

( 1 )  I 

Since we assume a strong 1 : 1 resonance between the second and the third 
body, to apply the results of the previous sections we shall need to pick k~ 
so that the oder of the second 1 :k~ resonance is sufficiently higher than 2. 

It is a simple exercise to verify that 

rl = (0,1, - 1), r2 = (kl ,  -- 1,0) 

form a "minimal" basis for the corresponding resonant module M in the 
sense described after formula (3). We can therefore choose the nonsingular 
integer matrix 

1 

T =  ~ - 1  

0 

with det T =  - 1 ,  and obtain the pendulum Hamiltonian (6) in the form 

Hp~,j(A, ~ ) =  �89 P A )  + Vt(o~ I ;~)  + ~  V2(cq/2) (42) 
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with 

P = (l/J_, + l/J3 -- l/J2"~ k -1/J~ 1/._f, J' V~(oq) = -s2r2(R-120) costal 

V_~(oq/l) = -- ~ str~(R-Im) hm'm~cosp2o~2 
Ip2r2_[ > Lilt) S 1 

(43) 

where 

l 2n;~nCOS r C O I  t 2 - - -  

(44) 

8 l 8 2 '~o l 
- + l o g  + 1 L(p) = Int log# 3a 27e2a3j 

8 L+ ] = I n t  7 -  log Lo(a) + 1  
J O "  P 

8 {[ Lo(a) = ~ log 21~(2 + s2 l'2( R - -  12o)( | + s i l lh2 2 a )  1'2 

+ s,r,(R-l,o) { l + sinh2 [ a + (2I~ ~t ) t'2 sinha] } 'e] 

x(27e2a3) I} 

Here we used the expressions (4) with x=3o-/4, (7}, (9), and (40). Let 
o-, > 0 be the point where the function Lo(a) reaches its global minimum 
on the interval (0, oo). For this. choice of a the function L(p) can be 
rewritten as 

8 1 L(p)=Int [~log~t+ Lo(ao) ] +1 

and the second inequality in (4) is satisfied if for sufficiently small, fixed p 
with 

% 0 <St <Co = ~s2r2{R-- 12o) (45) 
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the weaker resonance satisfies 

(46) 

Clearly, for any fixed /1 satisfying (45), there is an infinite number  of 
weaker resonances for which (46) holds. For  example, for a parameter  con- 
figuration with 

s2r2(R - 12o) = si rl(R - llo) = 0.01, 

the graph of Lo(a) near its global minimum is shown in Fig. 10. In this 
case, as seen from the figure, we have a o ~ 2.21 and Lo(ao)= 7. Then (46) 
shows that our analysis is valid near resonance intersections where the 
weaker resonance satisfies 

!+71 kl Int[31og 
For example, p = 0.001 would require k~ t> 16. (As numerical experiments 
related to the application of the energy-phase method indicate, the multi- 
pulse orbits generally continue to exist for p values much higher than 
0.001, hence, most likely, lower values of kl can also be allowed). 

To simplify our calculations, we now restrict our attention to higher 
order resonances for which the lowest order term in the potential V2 

L 
lO 

9.5 

9 

8.5 

8 

7.5 

7 

6.5 

\ 
\ / 
\ J / 

/ /  

2 2.5 

13 

Fig. 10. The graph of the function Lo(aL 
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dominates the higher order terms. By the exponential decay of the Fourier 
series of V2, this is satisfied for sufficiently large values of k l provided the 
lowest order Fourier coefficient of V2 is nonzero. To avoid lengthy calcula- 
tions, we only consider cases when this fact is simple to establish. 

k e m m a  5.1. Let us suppose that k~ = 4 l  with l~7/+, and the reso- 
nant action value I" lies on an unperturbed energy surface Ho(I)= ho such 
that 

% - l  / 

Then h~o. t) < 0 holds. 

Proof. From (44) we obtain that 

1 f2n f2,~ [ ( , . O ) 1 )  I;2 ] 
h(o. ~ 4 z -  o , - - , j ,  cos~b2cos~b2d~2 c o s k l ~ l c o s  211~- I s inai  d~l 

[( ),,2] 
l f o  ~ f,i" CO' sin ~b, d~b, + ~ 2  sin ~b2 sin ~G- d~2 sin kl~bj sin 21'; s~- 

(48) 

This expression can be rewritten as 

- 1 '~ cos (21'i~~ h(~ =~nn Io c~ k.~b' [ s,/ 
\ J 

1 +~nfo sink'cp'sin[(2I'i~ (49) 

where we used the fact that the second factors in both terms in (48) have 
integrands which are even with respect to ~b~ = ~r. Since the first integrand 
in (49) is odd and the second integrand is even with respect to ~b t = re/2, we 
obtain 

lr E( ] - -  sinkl~b~ sin 21' I sin ~bl d~b~ h(o . I ) -~  ~ ~ 

If k ~ = 4l with l ~ 7/+, then this integral can be written as 

[( ) ] - 1 k ( . I r a +  I J n / k t  O )  I 1 , 2  

h(~ .... o',,,~/~, sinkl~b I sin 2Ii-j- 7 sin~t &bl (50) 
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By condition (47) the second factor in these integrands is positive and 
strictly monotone increasing on the interval [0, n/2). As a result we obtain 

Z . t~/kl sin kt ~bl sin [ st/ 

r'2j+2t~"k'sink,ck, sin[(2I,i~ 
-t- q 2 i +  I t,+'~, St } 

for j=0, . . . ,  I - 1 .  But this together with (50) implies the statement of the 
lemma. II 

The exponential decay of the Fourier coefficients of V2 and Lemma 5.1 
imply that for any ~ > 0 small there exists lo(6)~ 72 § such that for l >  1o(6), 
k~ = 4 1 > L ( # ) - 1 ,  the potential V 2 can be written as 

V2(oqlt)=l"cosoL2+Co(~), C=-strt(R-lm) hm' l t>0  (51) 
/t 

provided condition (47) is satisfied. 
We are now in the position to verify the basic assumptions of 

Section 3 for our example. First, it is easy to see from (43) that 

I 1 1 
Pt, = ~ ,  +.~, ,  det P = j , j ~  (52) 

hence the nondegeneracy conditions in (13) and (14) are satisfied. Further- 
more, since p~ and Vt do not depend on p, our analysis is valid without 
restricting the resonant action value I" to a fixed, bounded set (see 
Remark 2.1 ). 

For A2= 0, c~to=x is a saddle-type equilibrium for the unperturbed 
(~l, A~) equations [see (16)] 

1 

4 1 = -s2r2(R - -  1,,,) sin ~1 

Since am is also a unique global maximum for the potential Vt assumption 
( 1 ) is satisfied. 

Using (51), we can write the reduced Hamiltonian Jg in (22) as 

1 
= ) r / ' +  _ :r176 2(J2 + ~ Fcos  ~ + ~0(~) (53) 
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whose phase portrait for fi = 0 is just that of the ordinary pendulum. Note 
that any periodic orbit Yo inside the pendulum separatrices satisfies 
Assumption (A2) of Section 3. Since separatrices are homoclinic orbits on 
the cylindrical phase space of ,~,, they and the periodic orbits they encircle 
are structurally stable with respect to small (_9(0) Hamiltonian perturba- 
tions that are periodic in the variable m 2. Thus, for fi > 0 small enough, the 
angular diameter of the domain 911 (see Fig. 4b) is given by 

do~ = 2 g -  C(fi) 

The phase shift Am + defined in (18) takes the form elm + = - 2 g (  1 + . i s /4) ,  
which implies that 

= [Am~ mod 2re[ = 2re ~_~ mod 2re (54) 2 

From (52) and (53) we immediately see that 

p, ,(-)ff(r/, m2 ; fi) -- ~P I Y[~) > 0, (q, m2)r 

which shows that statement (ii) of Theorem 4.1 applies. Finally, since Am_, + 
is independent of the parameter/2, condition (28) can be satisfied uniformly 
in p for an open set of the plane of the parameters ~ and ~ .  Hence in the 
proof of Theorem 3.3 the set ,S~ can be chosen a single connected interval 
of the form (0,/2o]. Then, using the results of this section combined with 
Theorem 4.1, we obtain the following result for our mechanical model. 

T h e o r e m  5.2. For e = 0  consider a neighborhood of the intersec- 
tion of the strong resonance ~2 = ~s and the weaker resonance k, ~ =  ~_, in 
the phase space of the unperturbed model Hamiltonian H,,. Suppose that 
the action values in this neighborhood lie on unperturbea ~,ergy surfaces 
Ho(I) = ho that satisfy condition (47). Then the following hold. 

(i) For k t =4/, le7/+ sufficiently large, for any fixed value of r5 in 
(54), and for any element Nk of the corresponding pulse sequence Nk(fi) 
graphed in Fig. 9, the perturbed model system has an infinite number of 
Na.-pulse rotational obits homoclinic to a set D~, c M~, near the double 
resonance. The Nk-pulse orbits are asymptotic to solutions which stay in the 
set L,v ~ x Ux ]1 -"-2 c M , ,  for times ~0(log 1/x/~ ) [cf. (ii) of Theorem 3.2]. 

(ii) The bifurcation diagram for the lay%s LNa is given in Fig. 8 and 
is valid for d,va. < 2re-  ~0(~), where ~ > 0 is a small number. 

(iii) An appropriately defined Poincar~ map associated with the 
perturbed model Hamiltonian possesses an invariant Cantor set with 
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chaotic dynamics whose elements are diffeomorphic to the product of a 
Smale horseshoe with the set U x T"-2. 

We note that the multipulse orbits obtained from this theorem are of 
rotational type (cf. Definition 3.2). This means the existence of near-reso- 
nant motions of our mechanical system along which the phase difference 
between the second and third bodies increases several times before the solu- 
tions pass through the higher order 1 :k~ resonance between the first and 
second bodies. After this passage the phases of the second and third bodies 
remain "locked" in the strong 1:1 resonance. 

6. D I S C U S S I O N  

In this paper we have studied the dynamics of weak-strong resonance 
junctions in n-degree-of-freedom, nearly integrable Hamiltonian systems. 
Analyzing the corresponding normal form, we have found families of 
homoclinic orbits which are doubly asymptotic to a (2n-2)-dimensional  
invariant manifold with two times scales. This manifold is filled with solu- 
tions that remain close to ( n -  1 )-dimensional whiskered tori for exponen- 
tially long times. The homoclinic obits we found make repeated departures 
from and returns to the manifold and may represent three different kinds 
of motion. For one of these types, the rotational motions, we have shown 
that without the exponentially small "tail" of the normal form, the mximal 
splitting angle of stable and unstable whiskers along the solution is (_9(x/~) 
[see statement (iii) of Theorem 4.1 ]. This amounts to a much more signifi- 
cant chaotic dynamics near weak-strong double resonances than the one 
caused by exponentially small splittings near single resonances. 

We gave explicit conditions under which a given resonance in a given 
system generates librational, rotational, or passing homoclinic orbits (see 
Definitions 3.1-3.3). We also showed that as the system parameters are 
varied, the rotational homoclinic orbits generically undergo a complicated 
but universal b~lrcation which can be described by the recursive relations 
(26), (27). These relations define an infinite binary tree, which we called the 
homoclinic tree. In a three-degree-of-freedom mechanical model of rotating, 
coupled rigid bodies we explicitly verified the existence of this bifurcation 
as the model parameters are varied. 

We believe that our results together with those in ref. 17 complement 
the mechanism suggested by Arnold for diffusion near a single resonance. 
While Arnold's diffusion concerns trajectories that move exponentially 
slowly near a single resonance in phase space, we describe what happens to 
these trajectories when they reach a resonance junction, i.e., the inter- 
section of the original "guiding" resonance with a weaker resonance. The 
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phenomenon suggested by our results is a multipulse intermittency in diffu- 
sion near double resonances. This intermittency means that the slowly 
diffusing trajectories temporarily become "alive" and exhibit several 
irregular transients before they cross the resonance junction along the 
stronger resonance. As it follows from the results in ref. 16, the measure of 
initial conditions exhibiting this phenomenon is algebraic in e, hence the 
resulting multipulse intermittency should be numerically observable. 

Finally, we note that, although the intersection of a weaker and a 
stronger resonance is a much more frequent occurrence in phase space, the 
dynamics near strong-strong resonance junctions is also of great interest. 
Our methods cannot be applied directly in this situation since the auxiliary 
perturbation parameter kt in the corresponding pendulum Hamiltonian (6) 
is no longer small. Nevertheless, since the types of structures we described 
in this paper are structurally stable, they are expected to survive for 
somewhat larger/~ values as well. This suggests that the remnants of the 
multipulse intermittency we described here continue to exist near the inter- 
section of equally strong resonances. We believe that this question deserves 
further study and can be answered affirmatively by applying numerical 
continuation techniques to given examples. 
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